The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110419 Least number k such that (prime(n)-1)! concatenated with k == 0 (mod prime(n)). 2

%I #11 Dec 27 2019 18:52:00

%S 0,1,0,3,12,22,15,24,31,13,38,26,18,14,53,47,41,39,33,29,27,21,17,11,

%T 127,192,176,144,128,209,111,214,178,166,106,245,215,185,165,135,105,

%U 276,236,228,212,204,156,108,319,313,301,283,277,247,229,211,193,187

%N Least number k such that (prime(n)-1)! concatenated with k == 0 (mod prime(n)).

%e a(5) = 12, 10! concatenated with 12 = 362880012 == 0 (mod prime(5)).

%p c0:=proc(x,y) local s: s:=proc(m) nops(convert(m,base,10)) end: if y=0 then 10*x else x*10^s(y)+y: fi end: a:=proc(n) local p: p:=proc(k) if c0((ithprime(n)-1)!,k) mod ithprime(n) = 0 then k else fi end: [seq(p(k),k=0..400)][1] end: seq(a(n),n=1..75); # c0 yields the concatenation of two numbers # _Emeric Deutsch_, Aug 05 2005

%t Do[p = Prime[n]; k = 0; s = ToString[(p-1)! ]; While[Mod[ToExpression[s <> ToString[k]], p] > 0, k++ ]; Print[k], {n, 1, 50}] (* _Ryan Propper_, Aug 05 2005 *)

%t lnk[n_]:=Module[{p=Prime[n],c,k=0},c=(Prime[n]-1)!;While[Mod[ c*10^ IntegerLength[ k]+k,p]!=0,k++];k]; Join[{0,1,0},Array[lnk,60,4]] (* _Harvey P. Dale_, Dec 27 2019 *)

%Y Cf. A110418, A110420.

%K base,easy,nonn

%O 1,4

%A _Amarnath Murthy_, Aug 01 2005

%E More terms from _Ryan Propper_ and _Emeric Deutsch_, Aug 05 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)