The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110419 Least number k such that (prime(n)-1)! concatenated with k == 0 (mod prime(n)). 2
0, 1, 0, 3, 12, 22, 15, 24, 31, 13, 38, 26, 18, 14, 53, 47, 41, 39, 33, 29, 27, 21, 17, 11, 127, 192, 176, 144, 128, 209, 111, 214, 178, 166, 106, 245, 215, 185, 165, 135, 105, 276, 236, 228, 212, 204, 156, 108, 319, 313, 301, 283, 277, 247, 229, 211, 193, 187 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
EXAMPLE
a(5) = 12, 10! concatenated with 12 = 362880012 == 0 (mod prime(5)).
MAPLE
c0:=proc(x, y) local s: s:=proc(m) nops(convert(m, base, 10)) end: if y=0 then 10*x else x*10^s(y)+y: fi end: a:=proc(n) local p: p:=proc(k) if c0((ithprime(n)-1)!, k) mod ithprime(n) = 0 then k else fi end: [seq(p(k), k=0..400)][1] end: seq(a(n), n=1..75); # c0 yields the concatenation of two numbers # Emeric Deutsch, Aug 05 2005
MATHEMATICA
Do[p = Prime[n]; k = 0; s = ToString[(p-1)! ]; While[Mod[ToExpression[s <> ToString[k]], p] > 0, k++ ]; Print[k], {n, 1, 50}] (* Ryan Propper, Aug 05 2005 *)
lnk[n_]:=Module[{p=Prime[n], c, k=0}, c=(Prime[n]-1)!; While[Mod[ c*10^ IntegerLength[ k]+k, p]!=0, k++]; k]; Join[{0, 1, 0}, Array[lnk, 60, 4]] (* Harvey P. Dale, Dec 27 2019 *)
CROSSREFS
Sequence in context: A051656 A074004 A088099 * A031223 A063598 A063107
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Aug 01 2005
EXTENSIONS
More terms from Ryan Propper and Emeric Deutsch, Aug 05 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)