Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 07 2018 06:51:23
%S 1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,5,3,1,1,3,5,1,3,1,1,1,1,1,11,1,1,
%T 1,1,1,1,1,1,7,1,11,1,1,1,1,7,1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,3,
%U 1,1,3,1,1,1,1,11,1,1,1,3,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,25,1,1,1,1,5
%N Consider the sequence A110566: lcm{1,2,...,n}/denominator of harmonic number H(n). a(n) is the factor that is changed going from A110566(n) to A110566(n+1).
%C a(n) is always an odd prime power, A061345.
%e A110566(4) through A110566(10) are {1,1,3,3,3,1,1}, therefore the factors are 1,3,1,1,3,1.
%t f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ LCM[f[n], f[n + 1]]/GCD[f[n], f[n + 1]], {n, 104}]
%o (PARI) f(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k));
%o a(n) = my(x = f(n+1)/f(n)); if (x > 1, x, 1/x); \\ _Michel Marcus_, Mar 07 2018
%Y Cf. A110566, A112811.
%K nonn
%O 1,5
%A _Robert G. Wilson v_, Sep 17 2005