login
A110239
Number of (1,1) steps in all peakless Motzkin paths of length n.
1
1, 3, 8, 22, 58, 151, 392, 1013, 2612, 6728, 17318, 44564, 114671, 295099, 759576, 1955657, 5036741, 12976355, 33443190, 86221745, 222371926, 573713958, 1480677048, 3822708372, 9872424913, 25504336609, 65907869404, 170368399138
OFFSET
3,2
COMMENTS
Sequence name can be easily translated into RNA secondary structure terminology.
Row sums of A110238.
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
G.f.: z^2g^2*(g-1)/(1-z^2*g^2), where g=1+zg+z^2*g(g-1)=[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2) is the g.f. of the RNA secondary structure numbers (A004148).
D-finite with recurrence -(n+2)*(26*n-99)*a(n) +(126*n^2-385*n-386)*a(n-1) +(-122*n^2+531*n-386)*a(n-2) +(-22*n^2+167*n-122)*a(n-3) +(-174*n^2+851*n-882)*a(n-4) +(74*n-117)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(5)=8 because in the 8 (=A004148(5)) peakless Motzkin paths of length 5, namely HHHHH, UHDHH, UHHDH, UHHHD, HUHDH, HUHHD, HHUHD and UUHDD (where U=(1,1), H=(1,0) and D=(1,-1)), we have altogether 8 U steps.
MAPLE
g:=(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/2/z^2: G:=z^2*g^2*(g-1)/(1-z^2*g^2): Gser:=series(G, z=0, 37): seq(coeff(Gser, z^n), n=3..34);
CROSSREFS
Sequence in context: A374773 A020962 A027243 * A271893 A001853 A217898
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 17 2005
STATUS
approved