login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110235
Triangle read by rows: T(n,k)(1<=k<=n) is the number of peakless Motzkin paths of length n having k (1,0) steps (can be easily translated into RNA secondary structure terminology).
1
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 6, 0, 10, 0, 1, 1, 0, 20, 0, 15, 0, 1, 0, 10, 0, 50, 0, 21, 0, 1, 1, 0, 50, 0, 105, 0, 28, 0, 1, 0, 15, 0, 175, 0, 196, 0, 36, 0, 1, 1, 0, 105, 0, 490, 0, 336, 0, 45, 0, 1, 0, 21, 0, 490, 0, 1176, 0, 540, 0, 55, 0, 1, 1, 0, 196, 0, 1764, 0, 2520, 0
OFFSET
1,8
COMMENTS
Row sums yield A004148. sum(k*T(n,k),k=1..n)=A110236(n).
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
T(n, k) = [2/(n+k)]binomial((n+k)/2, k)*binomial((n+k)/2, k-1).
G.f.: g=g(t, z) satisfies g=1+tzg+z^2*g(g-1).
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * y^k * x^(n-k)] * x^n/n ). - Paul D. Hanna, Oct 21 2012
EXAMPLE
T(5,3)=6 because we have UHDHH, UHHDH, UHHHD, HUHDH, HUHHD and HHUHD, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
1, 0, 6, 0, 1;
0, 6, 0, 10, 0, 1;
1, 0, 20, 0, 15, 0, 1;
0, 10, 0, 50, 0, 21, 0, 1;
1, 0, 50, 0, 105, 0, 28, 0, 1;
0, 15, 0, 175, 0, 196, 0, 36, 0, 1;
1, 0, 105, 0, 490, 0, 336, 0, 45, 0, 1; ...
MAPLE
T:=proc(n, k) if n+k mod 2 = 0 then 2*binomial((n+k)/2, k)*binomial((n+k)/2, k-1)/(n+k) else 0 fi end: for n from 1 to 14 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
PROG
(PARI) T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*y^j*x^(m-j))*x^m/m)+O(x^(n+1))), n, x), k, y)
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Oct 21 2012
CROSSREFS
Sequence in context: A229995 A119467 A166353 * A036856 A036855 A147985
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 17 2005
STATUS
approved