login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110203
a(n) = sum of squares of numbers < 2^n having exactly 3 ones in their binary representation.
4
0, 0, 49, 535, 3906, 24066, 135255, 717825, 3662848, 18158932, 88043517, 419348475, 1968346446, 9126412278, 41875079155, 190408381765, 858989527020, 3848282308584, 17134038373689, 75866264567775, 334251455152090
OFFSET
1,3
COMMENTS
Equals column 3 of triangle A110200.
FORMULA
G.f.: x^3*(49-396*x+1140*x^2-1360*x^3+576*x^4)/((1-x)^3*(1-2*x)^2*(1-4*x)^3).
EXAMPLE
For n=4, the sum of the squares of numbers < 2^4
having exactly 3 ones in their binary digits is:
a(4) = 7^2 + 11^2 + 13^2 + 14^2 = 535.
PROG
(PARI) {a(n)=polcoeff(x^3*(49-396*x+1140*x^2-1360*x^3+576*x^4)/ ((1-x)^3*(1-2*x)^2*(1-4*x)^3+x*O(x^n)), n)}
CROSSREFS
Cf. A110200 (triangle), A110201 (central terms), A002450 (column 1), A110202 (column 2), A110204 (column 4).
Sequence in context: A337356 A030510 A104935 * A263704 A166832 A299711
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2005
STATUS
approved