login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109938
Largest k-digit prime == 1 (mod prime(n)) where k is the number of digits in prime(n), or 0 if no such prime exists.
2
7, 7, 0, 0, 89, 79, 0, 0, 47, 59, 0, 0, 83, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 809, 619, 857, 0, 227, 509, 787, 823, 557, 0, 907, 0, 653, 0, 347, 359, 0, 383, 773, 0, 797, 0, 0, 0, 0, 467, 479, 0, 503, 0, 0, 0, 0, 0, 563, 0, 587, 0, 0, 0, 0, 0, 0, 0, 0, 0, 719, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
LINKS
EXAMPLE
a(13) = 83 as prime(13) = 41 and 83 == 1 (mod 41). 83 is the largest such two-digit prime.
MAPLE
A055642 := proc(n) max(1, ilog10(n)+1) ; end: A109938 := proc(n) local p, k, a; p := ithprime(n) ; k := A055642(p) ; a := 0; q := numtheory[pi](10^(k-1)) ; q := ithprime(q+1) ; while A055642(q) < k+1 do if q mod p = 1 and q > a then a := q ; fi ; q := nextprime(q) ; od ; RETURN(a) ; end: seq(A109938(n), n=1..90) ; # R. J. Mathar, Aug 17 2007
PROG
(Python)
from sympy import prime, prevprime
def a(n):
pn = prime(n); k = len(str(pn))
p = prevprime(10**k); lb = max(10**(k-1), 2)
while p > lb and p%pn != 1: p = prevprime(p)
return p if p > lb else 0
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 07 2021
(Python) # faster version for initial segment of sequence
from sympy import prime, primerange
def aupto(limit):
alst, primeswithkdigs, plimit = [], dict(), prime(limit)
for k in range(1, len(str(plimit))+1):
primeswithkdigs[k] = list(primerange(10**(k-1), 10**k))[::-1]
for pn in primerange(1, plimit+1):
k, found = len(str(pn)), False
for pk in primeswithkdigs[k]:
if pk%pn == 1: alst.append(pk); found = True; break
if not found: alst.append(0)
return alst
print(aupto(80)) # Michael S. Branicky, Jul 07 2021
CROSSREFS
Cf. A109939.
Sequence in context: A105167 A217227 A217346 * A372609 A215735 A344382
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jul 19 2005
EXTENSIONS
More terms from R. J. Mathar, Aug 17 2007
STATUS
approved