login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109742 a(n) = d(n-1) + d(n-2) + (n-1)[d(n-2) + 2d(n-3) + d(n-4)], where d(n), the derangement numbers, are given in A000166. (Let d(n) = 0 if n < 0.) 1
1, 2, 5, 9, 27, 123, 693, 4653, 36111, 317583, 3118617, 33804177, 400755267, 5156954019, 71572594557, 1065571143093, 16938122939703, 286298719063863, 5127206924693601, 96975312507734553, 1931609062232400747, 40414621201681598667, 886153986344092389957 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..23.

Y.-R. Liu and M. R. Murthy, Sieve methods in combinatorics, J. Combinatorial Theory, Ser. A, 111 (2005), 1-23.

MATHEMATICA

a[1] = 1; a[2] = 2; a[3] = 5; a[n_] := a[n] = ((2*n^3 - 27*n^2 + 115*n - 150)*a[n - 3] + (2*n^3 - 23*n^2 + 85*n - 100)*a[n - 2] + 3*(2*n - 9)*a[n - 1])/(2*n - 9); Table[a[n], {n, 1, 23}]

(* or: *)

d[n_] := If[n < 0, 0, Subfactorial[n]]; Table[(n - 1)*(d[n - 4] + 2*d[n - 3] + d[n - 2]) + d[n - 2] + d[n - 1], {n, 1, 23}](* Jean-Fran├žois Alcover, Nov 03 2016 *)

PROG

(PARI) d(n)=if(n>0, n!\/exp(1), n==0)

a(n)=d(n-1) + d(n-2) + (n-1)*(d(n-2) + 2*d(n-3) + d(n-4)) \\ Charles R Greathouse IV, Nov 03 2016

CROSSREFS

Cf. A000166, A109743.

Sequence in context: A243559 A136108 A026297 * A072979 A094600 A139796

Adjacent sequences:  A109739 A109740 A109741 * A109743 A109744 A109745

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, based on a suggestion from D. G. Rogers, Aug 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 09:55 EDT 2019. Contains 324323 sequences. (Running on oeis4.)