login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.
2

%I #27 Dec 10 2016 10:33:30

%S 1,0,1,1,3,4,9,14,28,47,88,152,279,486,876,1539,2744,4824,8551,15023,

%T 26503,46509,81747,143210,251007,438915,767403,1339487,2336955,

%U 4071906,7090589,12333894,21440241,37235775,64624267,112067176,194209732,336313393,582019000

%N Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.

%C A109509 is the Euler transform of the right-shifted Fibonacci numbers A000045.

%H Alois P. Heinz, <a href="/A109509/b109509.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1508.01796">Asymptotics of the Euler transform of Fibonacci numbers</a>, arXiv:1508.01796 [math.CO], Aug 07 2015.

%H N. J. A. Sloane and Thomas Wieder, <a href="http://arXiv.org/abs/math.CO/0307064">The Number of Hierarchical Orderings</a>, Order 21 (2004), 83-89.

%F a(n) ~ phi^(n-1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 1/2 + 2*5^(-1/4)*sqrt(n/phi) + s), where s = Sum_{k>=2} 1/((phi^(2*k) - phi^k - 1)*k) = 0.189744799982532613329750744326543900883761701983311537716143669... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Aug 06 2015

%e Let * denote an unlabeled element.

%e Let | denote a delimiter between two hierarchies. E.g., for n=3 we have in **|* two hierarchies (each with one level only).

%e Let : denote a higher level (within a single hierarchy). E.g., for n=6 we have in ***:**:* a single hierarchy distributed over three levels.

%e Then a(5) = 4 because we have *****, ***:**, **:***, **|***.

%p SeqSetSetxU := [T, {T=Set(S),S=Sequence(U,card>=1),U=Set(Z,card>=2)},unlabeled]; seq(count(SeqSetSetxU,size=j),j=1..25); # where x is an integer 1, 2, 3,... # x=2 gives 2 individuals per level.

%t CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k-1], {k, 1, 40}], {x, 0, 40}], x] (* _Vaclav Kotesovec_, Aug 06 2015 *)

%o (PARI) ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))

%o ET(vector(40,n,fibonacci(n-1)))

%Y Cf. A000045, A075729, A097236, A166861.

%K nonn

%O 0,5

%A _Thomas Wieder_, Jun 30 2005

%E Edited with more terms from _Franklin T. Adams-Watters_, Oct 21 2009