login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097236
Number of hierarchical orderings ("societies") with at least 2 elements ("individuals") on each level for n labeled elements.
4
0, 1, 1, 10, 31, 271, 1534, 14393, 117653, 1253524, 13140557, 160679069, 2026451948, 28278471729, 413532314433, 6516434058758, 107958571213579, 1899723866781859, 35092386753388698, 682552407940860353, 13893916425860413469, 296049402365644855888
OFFSET
1,4
LINKS
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
FORMULA
E.g.f.: exp(-(-exp(z)+1+z)/(2-exp(z)+z)).
a(n) ~ exp(1/(2*(c-2)) + 1/(2*(c-1)^2) + 2*sqrt(n/((c-2)*(c-1))) - n - 1) * n^(n-1/4) / (sqrt(2) * (c-1)^(1/4) * (c-2)^(n+1/4)), where c = -LambertW(-1, -exp(-2)) = A226572 = 3.14619322062... . - Vaclav Kotesovec, Sep 08 2014
EXAMPLE
a(4) = 10. Let : denote the partition of n labeled individuals 1,2,3,4 into x=2 sets (i.e. "societies"). E.g., in 12:34 one has a single society with members 1 and 2 and a further single society with members 3 and 4. Let | denote a higher level (within a single society), e.g., in 1|2 the individual 2 is one level up with respect to individual 1. The order of individuals on a level is insignificant, e.g. 12|34 is equivalent to 21|43.
For n = 4 and x = 2 one has 1234; 12:34; 13:24; 14:23; 12|34; 31|42; 43|21; 24|13; 21|34; 43|12; which gives 10 different hierarchical societies with at least 2 labeled individuals per level.
MAPLE
with(combstruct); SetSeqSetxL:=[T, {T=Set(S), S=Sequence(U, card>=1), U=Set(Z, card >= 2)}, labeled];
# where x is an integer 1, 2, 3, ... ; x=2 gives 2 individuals per level.
seq (count (SetSeqSetxL, size=j), j=1..20);
MATHEMATICA
terms = 22;
CoefficientList[ Exp[-(-Exp[z]+1+z)/(2-Exp[z]+z)] + O[z]^(terms+1), z] * Range[0, terms]! // Rest (* Jean-François Alcover, Aug 06 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Aug 02 2004
STATUS
approved