login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109474
a(1)=1, a(2)=3; thereafter, a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j)+a(k) for 1<=i<=j<=k<=n-1.
1
1, 3, 4, 13, 14, 23, 24, 33, 34, 43, 44, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 133, 134, 143, 144, 153, 154, 163, 164, 173, 174, 183, 184, 193, 194, 203, 204, 213, 214, 223, 224, 233, 234, 243, 244, 253, 254, 263, 264, 273, 274, 283, 284
OFFSET
1,2
FORMULA
a(n) = max{1, 5*n-9+2*(-1)^n}.
From Colin Barker, Jul 22 2012: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(1+2*x+7*x^3)/((1-x)^2*(1+x)). (End)
Conjecture: Except for the first term, a(n)=10*n-a(n-1)-23 (with a(2)=3). - Vincenzo Librandi, Dec 07 2010 [This is easily proved. - N. J. A. Sloane, Aug 07 2017]
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - sqrt(1-2/sqrt(5))*Pi/(10*phi) + log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 1, -1}, {3, 4, 13}, 60]] (* Harvey P. Dale, Aug 19 2014 *)
CROSSREFS
Cf. A001622.
Sequence in context: A138101 A287089 A095790 * A053910 A105074 A208847
KEYWORD
nonn,easy
AUTHOR
Bela Bajnok (bbajnok(AT)gettysburg.edu), Aug 10 2005
EXTENSIONS
Definition corrected by Bela Bajnok (bbajnok(AT)gettysburg.edu) and N. J. A. Sloane, Aug 07 2017
STATUS
approved