The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109354 a(n) = 6^((n^2 - n)/2). 6
 1, 1, 6, 216, 46656, 60466176, 470184984576, 21936950640377856, 6140942214464815497216, 10314424798490535546171949056, 103945637534048876111514866313854976, 6285195213566005335561053533150026217291776, 2280250319867037997421842330085227917956272625811456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Sequence given by the Hankel transform (see A001906 for definition) of A078018 = {1, 1, 7, 55, 469, 4237, 39907, 387739, ...}; example: det([1, 1, 7, 55; 1, 7, 55, 469; 7, 55, 469, 4237; 55, 469, 4237, 39907]) = 6^6 = 46656. In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 6 types of edge. - Mark Stander, Apr 11 2019 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..50 FORMULA a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(6i, j). G.f. A(x) satisfies: A(x) = 1 + x * A(6*x). - Ilya Gutkovskiy, Jun 04 2020 MATHEMATICA Table[6^((n^2-n)/2), {n, 0, 10}] (* Harvey P. Dale, May 28 2013 *) PROG (PARI) a(n) = 6^((n^2 - n)/2); \\ Michel Marcus, Apr 12 2019 CROSSREFS Cf. A000400, A006125, A047656, A053763, A053764, A109345. Sequence in context: A013711 A300593 A281431 * A193613 A194503 A229869 Adjacent sequences:  A109351 A109352 A109353 * A109355 A109356 A109357 KEYWORD nonn AUTHOR Philippe Deléham, Aug 25 2005 EXTENSIONS Terms a(11) and beyond from Andrew Howroyd, Jan 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 12:28 EDT 2021. Contains 347642 sequences. (Running on oeis4.)