The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109013 a(n) = gcd(n,10). 5
 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS FORMULA a(n) = 1 + [2|n] + 4*[5|n] + 4*[10|n], where [x|y] = 1 when x divides y, 0 otherwise. a(n) = a(n-10). Multiplicative with a(p^e, 10) = gcd(p^e, 10). - David W. Wilson, Jun 12 2005 G.f.: ( -10 - x - 2*x^2 - x^3 - 2*x^4 - 5*x^5 - 2*x^6 - x^7 - 2*x^8 - x^9 ) / ( (x-1)*(1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x+1) ). - R. J. Mathar, Apr 04 2011 Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 4/5^s + 4/10^s). - R. J. Mathar, Apr 04 2011 a(n) = ((n-1) mod 2 + 1)*(4*floor(((n-1) mod 5)/4) + 1). - Gary Detlefs, Dec 28 2011 MATHEMATICA GCD[Range[0, 100], 10] (* Harvey P. Dale, Jul 11 2011 *) CROSSREFS Cf. A109004. Sequence in context: A156767 A174921 A010180 * A343102 A213790 A240962 Adjacent sequences:  A109010 A109011 A109012 * A109014 A109015 A109016 KEYWORD nonn,easy,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 01:59 EDT 2021. Contains 346377 sequences. (Running on oeis4.)