login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of gcd(n,m) read by antidiagonals, n >= 0, m >= 0.
25

%I #31 Oct 17 2019 00:16:33

%S 0,1,1,2,1,2,3,1,1,3,4,1,2,1,4,5,1,1,1,1,5,6,1,2,3,2,1,6,7,1,1,1,1,1,

%T 1,7,8,1,2,1,4,1,2,1,8,9,1,1,3,1,1,3,1,1,9,10,1,2,1,2,5,2,1,2,1,10,11,

%U 1,1,1,1,1,1,1,1,1,1,11,12,1,2,3,4,1,6,1,4,3,2,1,12,13,1,1,1,1,1,1,1,1,1,1,1,1,13

%N Table of gcd(n,m) read by antidiagonals, n >= 0, m >= 0.

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 335.

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, ch. 4.

%D D. E. Knuth, The Art of Computer Programming, Addison-Wesley, section 4. 5. 2

%H Alois P. Heinz, <a href="/A109004/b109004.txt">Antidiagonals n = 0..140, flattened</a>

%H Marcelo Polezzi, <a href="http://www.jstor.org/stable/2974739">A Geometrical Method for Finding an Explicit Formula for the Greatest Common Divisor</a>, The American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 445-446.

%F a(n, m) = a(m, n) = a(m, n-m) = a(m, n mod m), n >= m.

%F a(n, m) = n + m - n*m + 2*Sum_{k=1..m-1} floor(k*n/m).

%F Multiplicative in both parameters with a(p^e, m) = gcd(p^e, m). - _David W. Wilson_, Jun 12 2005

%e 0;

%e 1, 1;

%e 2, 1, 2;

%e 3, 1, 1, 3;

%e 4, 1, 2, 1, 4;

%e 5, 1, 1, 1, 1, 5;

%e 6, 1, 2, 3, 2, 1, 6;

%e ...

%t a[n_, m_] := GCD[n, m]; Table[a[n - m, m], {n,0,10}, {m,0,n}]//Flatten (* _G. C. Greubel_, Jan 04 2018 *)

%o (PARI) {a(n, m) = gcd( n, m)}

%o (PARI) {a(n, m) = local(x); n = abs(n); m = abs(m); if( !m, n, -2 * sum( k=1, m, x = k * n / m; x - floor( x) - 1/2))} /* _Michael Somos_, May 22 2011 */

%Y Rows, columns and diagonals: A089128, A109007, A109008, A109009, A109010, A109011, A109012, A109013, A109014, A109015.

%Y A003989 is (1, 1) based.

%K nonn,easy,mult,tabl

%O 0,4

%A _Mitch Harris_