login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108756
A triangle related to the Jacobsthal polynomials.
3
1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 4, 5, 1, 1, 3, 6, 6, 7, 1, 1, 1, 10, 15, 8, 9, 1, 1, 4, 10, 21, 28, 10, 11, 1, 1, 1, 20, 35, 36, 45, 12, 13, 1, 1, 5, 15, 56, 84, 55, 66, 14, 15, 1, 1, 1, 35, 70, 120, 165, 78, 91, 16, 17, 1, 1, 6, 21, 126, 210, 220, 286, 105, 120, 18, 19, 1, 1
OFFSET
0,7
COMMENTS
Riordan array ((1 + x - x^2)/(1 - x^2)^2, x/(1 - x^2)^2). Row sums are A108742. Diagonal sums are Fibonacci(n+1) = A000045(n+1). Corresponding diagonals triangle is A102426.
LINKS
D. Stutson, V. Kocic, and G. Arora, A Few Identities involving Jacobsthal polynomials, Xavier University of Louisiana, preprint, 2005.
FORMULA
Number triangle: T(n, k) = binomial(floor((n + k + 1)/2) + k, floor((n + k)/2 - k)) for 0 <= k <= n.
From Petros Hadjicostas, May 30 2019: (Start)
Bivariate g.f.: Sum_{n, k > = 0} T(n,k) * x^n * y^k = (1 + x - x^2)/((1 - x^2)^2 - x * y). (Here, we assume T(n, k) = 0 for n < k. Because T(n, k) = A102426(n + 1 + k, k), we may use Tom Copeland's g.f. of the latter array, to get the g.f. of the current triangular array.)
G.f. for column k >= 0: (1 + x - x^2) * x^k/(1 - x^2)^(2*k + 2).
Recurrence: T(n, k) = T(n - 2, k) + T(n - (1 - (-1)^(n + k))/2, k - (1 + (-1)^(n + k))/2), for n >= 3 and 1 <= k <= n - 2, starting with T(n, n) = 1 = T(n + 1, n) for n >= 0, T(n, 0) = 1 when n is even >= 0, and T(n, 0) = (n + 1)/2 when n is odd >= 1.
Another recurrence: T(n, k) = T(n - 1, k - 1) + 2*T(n - 2, k) - T(n - 4, k) for n >= 4 and 1 <= k <= n - 4. (This follows from the fact that the denominator of the bivariate g.f. is x^0 * y^0 - x^1 * y^1 - 2 * x^2 * y^0 - x^4 * y^0.)
(End)
EXAMPLE
Triangle begins (with rows n >= 0 and columns k >= 0) as follows:
1;
1, 1;
1, 1, 1;
2, 3, 1, 1;
1, 4, 5, 1, 1;
3, 6, 6, 7, 1, 1;
1, 10, 15, 8, 9, 1, 1;
4, 10, 21, 28, 10, 11, 1, 1;
1, 20, 35, 36, 45, 12, 13, 1, 1;
5, 15, 56, 84, 55, 66, 14, 15, 1, 1; ...
MATHEMATICA
Table[Binomial[Floor[(n+k+1)/2]+k, Floor[(n+k)/2]-k], {n, 0, 12}, {k, 0, n} ]//Flatten (* G. C. Greubel, May 29 2019 *)
PROG
(PARI) {T(n, k) = binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k)}; \\ G. C. Greubel, May 29 2019
(Magma) [[Binomial(Floor((n+k+1)/2)+k, Floor((n+k)/2)-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 29 2019
(Sage) [[binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 29 2019
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jun 22 2005
EXTENSIONS
More terms from Petros Hadjicostas, May 29 2019
STATUS
approved