OFFSET
1,6
COMMENTS
Row sums of triangle A202327. - Peter Luschny, Apr 26 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = (1/n)*Sum_{k=1..n} ( k * Sum_{j=0..n} (-1)^(k+j)*binomial(j, 2*j-n-k)*binomial(n,j) ). - Vladimir Kruchinin, May 19 2012
G.f.: (-1 + x + sqrt(1+2*x+5*x^2))/(2*(1+x)). - G. C. Greubel, Oct 20 2023
MATHEMATICA
a[n_]:= Sum[k Sum[(-1)^(j-k) Binomial[j, 2j-n-k] Binomial[n, j], {j, 0, n}], {k, 1, n}]/n;
Array[a, 33] (* Jean-François Alcover, Jun 13 2019, after Vladimir Kruchinin *)
Rest@CoefficientList[Series[(-1+x+Sqrt[1+2*x+5*x^2])/(2*(1+x)), {x, 0, 41}], x] (* G. C. Greubel, Oct 20 2023 *)
PROG
(Julia)
function A108624_list(len::Int)
len <= 0 && return BigInt[]
T = zeros(BigInt, len, len); T[1, 1] = 1
S = Array(BigInt, len); S[1] = 1
for n in 2:len
T[n, n] = 1
for k in 1:n-1
T[n, k] = (k > 1 ? T[n-1, k-1] : 0) - T[n-1, k] - T[n-1, k+1]
end
S[n] = sum(T[n, k] for k in 1:n)
end
S end
println(A108624_list(33)) # Peter Luschny, Apr 27 2017
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 41);
Coefficients(R!( (-1+x+Sqrt(1+2*x+5*x^2))/(2*(1+x)) )); // G. C. Greubel, Oct 20 2023
(SageMath)
def A108624_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (-1+x+sqrt(1+2*x+5*x^2))/(2*(1+x))).list()
a=A108624_list(41); a[1:] # G. C. Greubel, Oct 20 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Christian G. Bower, Jun 12 2005
STATUS
approved