login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108566
a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, for n>4: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5)], where SORT places digits in ascending order and deletes 0's.
3
0, 1, 1, 2, 4, 8, 16, 23, 45, 89, 158, 339, 67, 127, 258, 138, 178, 117, 588, 146, 1245, 1224, 3489, 689, 1378, 1178, 239, 1789, 2678, 1579, 1488, 1589, 2369, 11249, 2259, 2335, 12289, 239, 347, 12788, 2357, 3355, 13357, 23344, 45558, 1579, 5589
OFFSET
0,4
COMMENTS
Extended by T. D. Noe, who also found that verified that the maximum is attained at a(48968063)=12336789999. The periodic part of the sequence begins with a(4847516) and has length 156501072. So the maximum is in the periodic part. Primes include: a(3) = 2, a(7) = 23, a(9) = 89, a(12) = 67, a(13) = 127, a(27) = 1789, a(29) = 1579, a(36) = 12289, a(37) = a(26) = 239, a(38) = 347, a(40) = 2357, a(45) = 1579, a(58) = 25579, a(59) = 23459. Semiprimes include: a(4) = 4 = 2^2, a(10) = 158 = 2 * 79, a(11) = 339 = 3 * 113, a(16) = 178 = 2 * 89, a(19) = 146 = 2 * 73, a(22) = 3489 = 3 * 1163, a(23) = 689 = 13 * 53, a(31) = 1589 = 7 * 227, a(32) = 2369 = 23 * 103, a(33) = 11249 = 7 * 1607, a(35) = 2335 = 5 * 467, a(47) = 22789 = 13 * 1753, a(50) = 178999 = 19 * 9421, a(54) = 14567 = 7 * 2081, a(55) = 23469 = 3 * 7823, a(57) = 22467 = 3 * 7489, a(60) = 12499 = 29 * 431, a(63) = 1477 = 7 * 211, a(66) = 799 = 17 * 47.
LINKS
Richard I. Hess, Problem 920: sorted Fibonacci sequence, Pi Mu Epsilon Journal, Vol. 10 (Fall 1998) No. 9, pp. 754-755.
FORMULA
Sorted hexanacci numbers, a.k.a. sorted Fibonacci 6-step sequence.
EXAMPLE
a(7) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
MATHEMATICA
nxt[{a_, b_, c_, d_, e_, f_}]:={b, c, d, e, f, FromDigits[Sort[IntegerDigits[Total[{a, b, c, d, e, f}]]]]}; NestList[nxt, {0, 1, 1, 2, 4, 8}, 50][[All, 1]] (* Harvey P. Dale, May 05 2022 *)
CROSSREFS
Cf. A001592, A069638, A107281, A108564, A108565, 108567-108573.
Sequence in context: A004620 A018618 A294364 * A371880 A057615 A018416
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Jun 10 2005
STATUS
approved