login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108421
Smallest number of ones needed to write in binary representation 2*n as sum of two primes.
3
2, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 5, 6, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 6, 5, 6, 7, 7, 7, 8, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 7, 8, 5, 5, 6, 6, 6, 6, 7, 5, 6, 6, 7, 8, 7, 7, 8, 6, 7, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 5, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 6, 5, 5, 6, 6, 6, 6, 7, 5, 6
OFFSET
2,1
COMMENTS
a(n) = Min{A000120(p)+A000120(q) : p,q prime and p+q=2*n}.
a(n) = A108422(n) - A108423(n).
a(n) >= A000120(n)+1, with equality for n in A241757. - Robert Israel, Mar 25 2018
EXAMPLE
n=15: 2*15=30 and A002375(15)=3 with 30=7+23=11+19=13+17,
13+17 -> 1101+10001 needs a(15)=5 binary ones, whereas
7+23 -> 111+10111 and 11+19 -> 1011+10011 need more.
MAPLE
N:= 200: # to get a(2)..a(N)
Primes:= select(isprime, [seq(i, i=3..2*N-3, 2)]):
Ones:= map(t -> convert(convert(t, base, 2), `+`), Primes):
V:= Vector(N): V[2]:= 2:
for i from 1 to nops(Primes) do
p:= Primes[i];
for j from 1 to i do
k:= (p+Primes[j])/2;
if k > N then break fi;
t:= Ones[i]+Ones[j];
if V[k] = 0 or t < V[k] then V[k]:= t fi
od
od:
convert(V[2..N], list); # Robert Israel, Mar 25 2018
MATHEMATICA
Min[#]&/@(Table[Total[Flatten[IntegerDigits[#, 2]]]&/@Select[ IntegerPartitions[ 2*n, {2}], AllTrue[#, PrimeQ]&], {n, 2, 110}]) (* Harvey P. Dale, Jul 27 2020 *)
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jun 03 2005
STATUS
approved