Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 12 2018 02:43:30
%S 0,1,2,6,30,216,2010,22824,305466,4704864,81938358,1591718520,
%T 34116485502,799695029808,20348556463482,558563850560184,
%U 16451687169853290,517516967826342336,17315898224208133494
%N a(n) = 2*(n-1)*a(n-1) -(n-1)*a(n-2) with a(0)=0, a(1)=1.
%C This is also the (2,2) element of the product matrix after multiplying the unit matrix from the left by the matrices (0,-1;j-1,2j-2) in the order j=2 to n.
%H Robert Israel, <a href="/A108204/b108204.txt">Table of n, a(n) for n = 0..404</a>
%F E.g.f.: exp(x/2) (1-2x)^(1/4) Int_{0..x} exp(-t/2) (1-2t)^(-5/4) dt satisfies the d.e. (1-2x) y' + x y = 1, y(0)=0. - _Robert Israel_, Jun 11 2018
%p f:= gfun:-rectoproc({a(n)=2*(n-1)*a(n-1) -(n-1)*a(n-2),a(0)=0,a(1)=1},a(n),remember):
%p map(f, [$0..50]); # _Robert Israel_, Jun 11 2018
%t M[n_] := {{0, -1}, {(n - 1), 2*(n - 1)}};
%t v[1] = {0, 1};
%t v[n_] := v[n] = M[n].v[n - 1];
%t a = Table[Abs[v[n][[1]]], {n, 1, 25}]
%t (* Second program: *)
%t Nest[Append[#, 2 (Length[#] - 1) Last[#] - (Length[#] - 1) #[[-2]]] &, {0, 1}, 17] (* _Michael De Vlieger_, Jun 11 2018 *)
%Y Cf. A000166.
%K nonn,easy
%O 0,3
%A _Roger L. Bagula_, Jun 15 2005
%E Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009