login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108204
a(n) = 2*(n-1)*a(n-1) -(n-1)*a(n-2) with a(0)=0, a(1)=1.
1
0, 1, 2, 6, 30, 216, 2010, 22824, 305466, 4704864, 81938358, 1591718520, 34116485502, 799695029808, 20348556463482, 558563850560184, 16451687169853290, 517516967826342336, 17315898224208133494
OFFSET
0,3
COMMENTS
This is also the (2,2) element of the product matrix after multiplying the unit matrix from the left by the matrices (0,-1;j-1,2j-2) in the order j=2 to n.
LINKS
FORMULA
E.g.f.: exp(x/2) (1-2x)^(1/4) Int_{0..x} exp(-t/2) (1-2t)^(-5/4) dt satisfies the d.e. (1-2x) y' + x y = 1, y(0)=0. - Robert Israel, Jun 11 2018
MAPLE
f:= gfun:-rectoproc({a(n)=2*(n-1)*a(n-1) -(n-1)*a(n-2), a(0)=0, a(1)=1}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jun 11 2018
MATHEMATICA
M[n_] := {{0, -1}, {(n - 1), 2*(n - 1)}};
v[1] = {0, 1};
v[n_] := v[n] = M[n].v[n - 1];
a = Table[Abs[v[n][[1]]], {n, 1, 25}]
(* Second program: *)
Nest[Append[#, 2 (Length[#] - 1) Last[#] - (Length[#] - 1) #[[-2]]] &, {0, 1}, 17] (* Michael De Vlieger, Jun 11 2018 *)
CROSSREFS
Cf. A000166.
Sequence in context: A161620 A333508 A205569 * A088160 A112317 A089459
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 15 2005
EXTENSIONS
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
STATUS
approved