login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108190
4-almost primes equal to the sum of two successive semiprimes.
1
24, 36, 100, 184, 189, 372, 472, 484, 513, 532, 580, 644, 748, 824, 904, 940, 1016, 1029, 1036, 1062, 1068, 1096, 1107, 1164, 1180, 1208, 1225, 1236, 1269, 1284, 1304, 1336, 1340, 1395, 1420, 1430, 1444, 1482, 1508, 1521, 1580, 1593, 1610, 1628, 1666
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 24 because 2*5 + 2*7 = 10 + 14 = 24 = 2*2*2*3.
a(5) = 189 because 2*47 + 5*19 = 94 + 95 = 189 = 3*3*3*7.
a(11) = 513 because 2*127 + 7*37 = 254 + 259 = 513 = 3*3*3*19.
MATHEMATICA
Select[Total/@Partition[Select[Range[2000], PrimeOmega[#]==2&], 2, 1], PrimeOmega[ #] ==4&] (* Harvey P. Dale, Apr 26 2018 *)
PROG
(PARI) list(lim)=my(u=List(), L=lim\2); forprime(p=2, L\2, forprime(q=2, min(p, L\p), listput(u, p*q))); for(k=L+1, 2*L, if(bigomega(k)==2, listput(u, k); break)); u=Set(u); for(i=2, #u, u[i-1]=u[i]+u[i-1]); if(u[#u]>lim, u[#u]=0); select(k->bigomega(k)==4, u) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
Sequence in context: A278474 A327946 A288949 * A185489 A303884 A304616
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Jun 15 2005
EXTENSIONS
Corrected and extended by Ray Chandler, Jul 07 2005
STATUS
approved