|
|
A107933
|
|
Numbers n such that n and n-th prime have only one common digit = 2.
|
|
4
|
|
|
52, 62, 82, 129, 200, 202, 206, 225, 226, 257, 258, 268, 269, 312, 320, 323, 329, 342, 362, 402, 412, 421, 422, 423, 424, 426, 427, 428, 462, 492, 520, 582, 602, 812, 824, 922, 925, 926, 928, 929, 1042, 1122, 1142, 1212, 1224
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Other cases of common digit d: A107931 (d=0), A107932 (d=1), A107934 (d=3), A107935 (d=4), A107936 (d=5), A107937 (d=6), A107938 (d=7), A107939 (d=8), A107940 (d=9). Cf. A107930 - smallest m's for digits 0,...,9.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 52 because the 52nd prime, 239 and 52 have the only common digit 2, and 52 is the smallest such number.
|
|
MATHEMATICA
|
bb = {}; Do[If[IntegerDigits [n]\[Intersection]IntegerDigits [ Prime[n]]\[Equal]{2}, bb = Append[bb, n]], {n, 1800}]; bb (* Zak Seidov *)
FromDigits[First[#]]&/@Select[Table[IntegerDigits[{n, Prime[n]}], {n, 1300}], Intersection@@# == {2} &] (* Harvey P. Dale, Nov 05 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|