|
|
A107932
|
|
Numbers n such that n and n-th prime have only one common digit = 1.
|
|
3
|
|
|
11, 13, 18, 31, 41, 81, 100, 112, 113, 114, 115, 121, 125, 126, 128, 133, 135, 141, 152, 156, 157, 160, 164, 167, 171, 174, 175, 176, 177, 178, 179, 182, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 197, 198, 199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Other cases of common digit d: A107931 (d=0), A107933 (d=2), A107934 (d=3), A107935 (d=4), A107936 (d=5), A107937 (d=6), A107938 (d=7), A107939 (d=8), A107940 (d=9). Cf. A107930 - smallest m's for digits 0,...,9.
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
EXAMPLE
|
a(1)=11 because 11th prime, 31 and 11 have the only common digit = 1 and 11 is the smallest such a number.
|
|
MATHEMATICA
|
bb={}; Do[If[IntegerDigits [n]\[Intersection]IntegerDigits [ Prime[n]]\[Equal]{1}, bb=Append[bb, n]], {n, 200}]; bb
|
|
CROSSREFS
|
Cf. A107930 - A107940.
Sequence in context: A088561 A211457 A154523 * A143365 A090137 A306926
Adjacent sequences: A107929 A107930 A107931 * A107933 A107934 A107935
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Zak Seidov, May 28 2005
|
|
STATUS
|
approved
|
|
|
|