login
A107815
Primes p such that sigma(k) = phi(prime(k)-1), where p = prime(k).
2
2, 17, 67, 211, 631, 1051, 1811, 1951, 2287, 2791, 3331, 7297, 10099, 13597, 15739, 19717, 21169, 22153, 41341, 85933, 400051, 2251201, 2991253, 3051751, 4244791, 5713891
OFFSET
1,1
COMMENTS
a(n) = prime(A067651(n)).
Values of k are in A067651, values of sigma(k) are in A107816.
EXAMPLE
a(3) = prime(A067651(3)) = prime(19) = 67.
MATHEMATICA
Prime[#]&/@Select[Range[400000], DivisorSigma[1, #]==EulerPhi[Prime[#]-1]&] (* Harvey P. Dale, Sep 01 2021 *)
PROG
(PARI) m=400000; for(n=1, m, p=prime(n); if(sigma(n)==eulerphi(p-1), print1(p, ", ")))
CROSSREFS
Sequence in context: A037420 A034721 A281708 * A042803 A182876 A056074
KEYWORD
nonn,more
AUTHOR
Klaus Brockhaus, May 24 2005
STATUS
approved