login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A107674
Matrix square of triangle A107671.
3
1, 24, 4, 2268, 135, 9, 461056, 15936, 448, 16, 160977375, 3789250, 69000, 1125, 25, 85624508376, 1485395280, 19994688, 223560, 2376, 36, 64363893844726, 862907827866, 9138674195, 79086196, 596820, 4459, 49, 64928246784463872
OFFSET
0,2
COMMENTS
Column 0 is A107675.
FORMULA
Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^3)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D^2*P.
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
24, 4;
2268, 135, 9;
461056, 15936, 448, 16;
160977375, 3789250, 69000, 1125, 25;
85624508376, 1485395280, 19994688, 223560, 2376, 36;
...
PROG
(PARI) {T(n, k)=local(P=matrix(n+1, n+1, r, c, if(r>=c, (r^3)^(r-c)/(r-c)!)), D=matrix(n+1, n+1, r, c, if(r==c, r))); if(n>=k, (P^-1*D^2*P)[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 07 2005
STATUS
approved