|
|
A107485
|
|
a(1) is the least k such that j(1) = k*2*3 - 1 is the lesser of a twin prime pair; then for n > 1, a(n) is the least k greater than a(n-1) such that j(n) = k*j(n-1)*(j(n-1)+2) - 1 is the lesser of a twin prime pair.
|
|
1
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..10.
Pierre CAMI, PFGW Script
|
|
EXAMPLE
|
1*2*3 - 1 = 5, 5 and 7 twin primes, a(1) = 1.
12*5*7 - 1 = 419, 419 and 421 twin primes, a(2) = 12.
270*419*421 - 1 = 47627729, 47627729 and 4762731 twin primes, a(3) = 270.
|
|
PROG
|
(PARI) lista(nn) = {my(j=5, k=1, m); print1(k); for(n=2, nn, m=j*(j+2); j=k*m-1; while(ispseudoprime(j+=m)+ispseudoprime(j+2)<2, k++); print1(", ", k++)); } \\ Jinyuan Wang, Mar 05 2020
|
|
CROSSREFS
|
Sequence in context: A068283 A003390 A239779 * A293270 A341815 A117415
Adjacent sequences: A107482 A107483 A107484 * A107486 A107487 A107488
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Pierre CAMI, May 28 2005
|
|
EXTENSIONS
|
a(8) corrected by Jinyuan Wang, Mar 05 2020
Name clarified by Michel Marcus, Mar 07 2020
a(9)-a(10), computed by Pierre CAMI, added by Michel Marcus, Mar 08 2020
|
|
STATUS
|
approved
|
|
|
|