login
A107483
Base 3 representation of the positive integers n such that Sum[d[k],k=1..n] is an integer, where d(k) is the base 3 fraction 0.k (e.g., d(22 base 10)=d(211 base 3)=0.221 base 3).
0
2, 20, 100, 122, 2222, 20000, 100000, 122222, 2222222, 20000000, 100000000, 122222222, 2222222222, 20000000000, 100000000000, 122222222222, 2222222222222, 20000000000000, 100000000000000, 122222222222222
OFFSET
1,1
FORMULA
It appears that a(n)=2*(3^(3*k-1))-1 if n=4k, a(n)=3^(3*k+1)-1 if n=4k+1, a(n)=2*(3^(3*k+1)) if n=4k+2 and a(n)=3^(3*k+2) if n=4k+3.
From the above would follow that sequence has a rational g.f.
Empirical g.f.: 2*x*(50*x^6-100*x^5+90*x^4+20*x^3+41*x^2+9*x+1) / ((x-1)*(x^2+1)*(1000*x^4-1)). - Colin Barker, Nov 06 2014
EXAMPLE
Sum[d(k), k=1..6](base 3) = (0.1+0.2+0.10+0.11+0.12+0.20)(base 3)=10.0 (base 3)=3 (base 10), hence 6 is in the sequence.
CROSSREFS
Cf. A054464.
Sequence in context: A328510 A033840 A086755 * A356344 A220856 A035599
KEYWORD
nonn,base
AUTHOR
John W. Layman, Jun 09 2005
STATUS
approved