login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.
3

%I #8 Mar 23 2024 20:23:12

%S 5,7,11,17,13,17,23,31,41,53,67,83,101,19,23,29,37,47,59,73,89,107,

%T 127,149,173,199,227,257,43,47,53,61,71,83,97,113,131,151,173,197,223,

%U 251,281,313,347,383,421,461,503,547,593,641,691,743,797,853,911,971,1033

%N Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.

%C Former title: Triangular form sequence made from a version of A082605 Euler extension.

%D Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155

%H G. C. Greubel, <a href="/A107448/b107448.txt">Rows n = 1..10 of the irregular triangle, flattened</a>

%F T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - _G. C. Greubel_, Mar 23 2024

%e The irregular triangle begins as:

%e 5;

%e 7, 11, 17;

%e 13, 17, 23, 31, 41, 53, 67, 83, 101;

%e 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;

%t (* First program *)

%t a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2;

%t euler= Table[a[n], {n,10}];

%t Table[k^2 + k + euler[[n]], {n,7}, {k,euler[[i]] -2}]//Flatten

%t (* Second program *)

%t b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2;

%t T[n_, k_]:= b[n] +k^2+k+1;

%t Table[T[n,k], {n,8}, {k,b[n]-1}]//Flatten (* _G. C. Greubel_, Mar 23 2024 *)

%o (Magma)

%o b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;

%o A107448:= func< n,k | b(n) +k^2 +k +1 >;

%o [A107448(n,k): k in [1..b(n)-1], n in [1..8]]; // _G. C. Greubel_, Mar 23 2024

%o (SageMath)

%o def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2

%o def A107448(n,k): return b(n) + k^2+k+1;

%o flatten([[A107448(n,k) for k in range(1,b(n))] for n in range(1,8)]) # _G. C. Greubel_, Mar 23 2024

%Y Cf. A056486, A082605.

%K nonn

%O 1,1

%A _Roger L. Bagula_, May 26 2005

%E Edited by _G. C. Greubel_, Mar 23 2024