login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107373
a(n) = (n/2)*binomial(n-1, floor((n-1)/2)) - 2^(n-2).
7
0, 0, 1, 2, 7, 14, 38, 76, 187, 374, 874, 1748, 3958, 7916, 17548, 35096, 76627, 153254, 330818, 661636, 1415650, 2831300, 6015316, 12030632, 25413342, 50826684, 106853668, 213707336, 447472972, 894945944, 1867450648, 3734901296, 7770342787, 15540685574
OFFSET
1,4
COMMENTS
Total number of descents in all faro permutations of length n-1. Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. See also A340567, A340568 and A340569. - Sergey Kirgizov, Jan 11 2021
LINKS
Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See Table 1.
F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A. 22:1 (2011), 39-60.
Igor Pak, The area of cyclic polygons: Recent progress on Robbins' Conjectures, Adv. Applied Math. 34 (2005), 690-696. Special issue in memory of David Robbins.
FORMULA
a(2*n) = 2*A000531(n-1); a(2*n+1) = A000531(n). - Max Alekseyev, Sep 30 2013
(1-n)*a(n) + 2*(n-1)*a(n-1) + 4*(n-2)*a(n-2) + 8*(-n+2)*a(n-3) = 0. - R. J. Mathar, May 26 2013
MAPLE
A056040 := n -> n!/iquo(n, 2)!^2:
A133265 := n -> (n+2+(n-2)*(-1)^n)/2:
A107373 := n -> (A056040(n)*A133265(n)-2^n)/4:
seq(A107373(n), n=1..34); # Peter Luschny, Aug 30 2011
MATHEMATICA
Table[(n/2) Binomial[n-1, Floor[(n-1)/2]] - 2^(n-2), {n, 1, 40}] (* Vincenzo Librandi, Oct 01 2013 *)
PROG
(Magma) [(n/2)*Binomial(n-1, Floor((n-1)/2)) - 2^(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 01 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 20 2007
STATUS
approved