

A106967


Primes of the form 3x^2+xy+7y^2, with x and y any integer.


2



3, 7, 11, 17, 29, 31, 37, 59, 61, 109, 113, 127, 151, 167, 173, 191, 197, 241, 313, 317, 349, 353, 359, 373, 383, 409, 419, 431, 443, 463, 479, 499, 509, 523, 547, 563, 593, 617, 619, 673, 691, 727, 733, 757, 839, 853, 857, 859, 863, 881, 907, 911, 929, 941
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=83.
Primes p such that the polynomial x^32x^22x1 is irreducible over Zp. The polynomial discriminant is also 83.  T. D. Noe, May 13 2005


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


MATHEMATICA

Union[QuadPrimes2[3, 1, 7, 10000], QuadPrimes2[3, 1, 7, 10000]] (* see A106856 *)


CROSSREFS

Sequence in context: A088206 A052341 A038949 * A045420 A190898 A142248
Adjacent sequences: A106964 A106965 A106966 * A106968 A106969 A106970


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 09 2005


STATUS

approved



