login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106805 Expansion of g.f.: 1/(1 - 2*x - x^2 + x^3). 1
1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525, 77664004259 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-1).

FORMULA

G.f. for sequence with 1 prepended: 1/( 1 - Sum_{k>=0} x*(x+x^2-x^3)^k ) ). - Joerg Arndt, Sep 30 2012

MATHEMATICA

M= {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0]= {0, 1, 1}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[2]], {n, 0, 35}]

LinearRecurrence[{2, 1, -1}, {1, 2, 5}, 35] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)

PROG

(PARI) Vec( 1/(1-2*x-x^2+x^3) + O(x^66) )  /* Joerg Arndt, Sep 30 2012 */

(MAGMA) I:=[1, 2, 5]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3): n in [1..36]]; // G. C. Greubel, Sep 11 2021

(Sage)

def A106805_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( 1/(1-2*x-x^2+x^3) ).list()

A106805_list(35) # G. C. Greubel, Sep 11 2021

CROSSREFS

A006054 shifted left twice.

Sequence in context: A017920 A228765 A006054 * A094981 A304969 A239812

Adjacent sequences:  A106802 A106803 A106804 * A106806 A106807 A106808

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, May 17 2005

EXTENSIONS

Edited by the Associate Editors of the OEIS, Apr 09 2009

Name corrected by Joerg Arndt, Sep 30 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 3 04:57 EDT 2022. Contains 355030 sequences. (Running on oeis4.)