login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106539 a(1)=1, a(2)=1, a(n) = (n-1)*a(n-1) - (n-2)*a(n-2) - ... - a(1) for n>=3. 1
1, 1, 1, 0, -6, -36, -192, -1104, -7248, -54816, -472512, -4573824, -49064448, -577130496, -7381281792, -101940854784, -1511556077568, -23945902043136, -403579232182272, -7209532170092544, -136064164749017088, -2705030337674674176, -56501002847058788352 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Beginning with a(0)=0, a(1)=1 gives 0, 1, 2, 4, 8, 16, ..., 2^(n-1).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..400

FORMULA

D-finite with recurrence: a(n) = n*a(n-1) - 2*(n-2)*a(n-2), a(1)=1, a(2)=1. - Georg Fischer, Jun 18 2021

a(n) = e^(-2)*( - Gamma(n)*E_{n}(-2) + 2^(n-1)*(-Ei(2) + e^2 - Pi*i), where Ei(x) and E_{n}(x) are exponential integrals. - G. C. Greubel, Sep 03 2021

EXAMPLE

a(7) = 6*(-36) - 5(-6) - 4*0 - 3*1 - 2*1 - 1*1 = -216 + 30 - 0 - 3 - 2 - 1 = -192.

MAPLE

nmax:=24; a[1]:=1: a[2]:=1: for n from 3 to nmax do a[n]:=(n-1)*a[n-1]-add(k*a[k], k=1..n-2) od: seq(a[n], n=1..nmax); # Emeric Deutsch, Feb 03 2006

MATHEMATICA

RecurrenceTable[{a[n]==n*a[n-1] - 2*(n-2)*a[n-2], a[1]==a[2]==1}, a[n], {n, 1, 20}] (* Georg Fischer, Jun 18 2021 *)

PROG

(MAGMA) [n le 2 select 1 else n*Self(n-1) - 2*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 03 2021

(Sage)

def a(n): return 1 if (n<3) else n*a(n-1) - 2*(n-2)*a(n-2)

[a(n) for n in (1..30)] # G. C. Greubel, Sep 03 2021

CROSSREFS

Cf. A001571.

Sequence in context: A209904 A146883 A159721 * A215453 A267229 A048980

Adjacent sequences:  A106536 A106537 A106538 * A106540 A106541 A106542

KEYWORD

easy,sign

AUTHOR

Alexandre Wajnberg, May 08 2005

EXTENSIONS

More terms from Emeric Deutsch, Feb 03 2006

Definition adapted to offset by Georg Fischer, Jun 18 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)