OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-2,-3).
FORMULA
G.f.: (1-x)/((1-x-x^2)*(1-3*x)).
a(n) = Sum_{k=0..n} Fibonacci(n-k-1) * 3^k.
a(n) = A101220(2, 3, n+1). - Ross La Haye, Jul 25 2005
a(n) = (1/5)*(6*3^n - Lucas(n+1)). - Ralf Stephan, Nov 16 2010
Sum_{k=0..n} a(k) = A094688(n+1). - G. C. Greubel, Aug 05 2021
MATHEMATICA
LinearRecurrence[{4, -2, -3}, {1, 3, 10}, 30] (* Harvey P. Dale, Oct 08 2014 *)
PROG
(Magma) I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1) -2*Self(n-2) -3*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021
(Sage) [(2*3^(n+1) - lucas_number2(n+1, 1, -1))/5 for n in (0..40)] # G. C. Greubel, Aug 05 2021
(PARI) a(n) = sum(k=0, n, fibonacci(n-k-1) * 3^k); \\ Michel Marcus, Aug 06 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 05 2005
STATUS
approved