login
A106517
Convolution of Fibonacci(n-1) and 3^n.
4
1, 3, 10, 31, 95, 288, 869, 2615, 7858, 23595, 70819, 212512, 637625, 1913019, 5739290, 17218247, 51655351, 154967040, 464902717, 1394710735, 4184136386, 12552415923, 37657258715, 112971793856, 338915410225, 1016746277043
OFFSET
0,2
FORMULA
G.f.: (1-x)/((1-x-x^2)*(1-3*x)).
a(n) = Sum_{k=0..n} Fibonacci(n-k-1) * 3^k.
a(n) = A101220(2, 3, n+1). - Ross La Haye, Jul 25 2005
a(n) = A101220(3, 3, n+1) - A101220(3, 3, n). - Ross La Haye, May 31 2006
a(n) = (1/5)*(6*3^n - Lucas(n+1)). - Ralf Stephan, Nov 16 2010
Sum_{k=0..n} a(k) = A094688(n+1). - G. C. Greubel, Aug 05 2021
MATHEMATICA
LinearRecurrence[{4, -2, -3}, {1, 3, 10}, 30] (* Harvey P. Dale, Oct 08 2014 *)
PROG
(Magma) I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1) -2*Self(n-2) -3*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021
(Sage) [(2*3^(n+1) - lucas_number2(n+1, 1, -1))/5 for n in (0..40)] # G. C. Greubel, Aug 05 2021
(PARI) a(n) = sum(k=0, n, fibonacci(n-k-1) * 3^k); \\ Michel Marcus, Aug 06 2021
CROSSREFS
Diagonal sums of number triangle A106516.
Sequence in context: A180432 A237930 A192337 * A363780 A055217 A097472
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 05 2005
STATUS
approved