OFFSET
1,4
LINKS
FORMULA
Shifts left under Carlitz transform.
Carlitz transform T(A(x)) has g.f. 1/(1-sum(k>0, (-1)^(k+1)*A(x^k))).
From Petros Hadjicostas, Sep 17 2017: (Start)
The following results are simple consequences of the fact that the sequence shifts left under the Carlitz transform.
a(n) = Sum_{1 <= s <= n-1} a(n-s)*b(s) for n>=2, where b(n) = Sum_{m|n} (-1)^{1+(n/m)} a(m), with a(1) = 1.
If A(x) = Sum_{n>=1} a(n)*x^n, then A(x)-x = A(x)*Sum_{n>=1} a(n)*x^n/(1+x^n).
(End)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Apr 29 2005
STATUS
approved