login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106306
Primes that yield a simple orbit structure in 2-step recursions.
2
2, 3, 7, 13, 17, 23, 37, 41, 43, 47, 53, 61, 67, 73, 83, 89, 97, 103, 107, 109, 113, 127, 137, 149, 157, 163, 167, 173, 193, 197, 223, 227, 233, 241, 257, 263, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 389, 397, 401, 409, 421, 433
OFFSET
1,1
COMMENTS
Consider the 2-step recursion x(k)=x(k-1)+x(k-2) mod n. For any of the n^2 initial conditions x(1) and x(2) in Zn, the recursion has a finite period. When n is a prime in this sequence, all of the orbits, except the one containing (0,0), have the same length.
Except for 5, this appears to be the complement of A053032, odd primes p with one 0 in Fibonacci numbers mod p. - T. D. Noe, May 03 2005
A prime p is in this sequence if either (1) the polynomial x^2-x-1 mod p has no zeros for x in [0,p-1] (see A086937) or (2) the polynomial has zeros, but none is a root of unity mod p. The first few primes in the second category are 41, 61, 89 and 109. - T. D. Noe, May 12 2005
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
CROSSREFS
Cf. A015134 (orbits of 2-step sequences).
Sequence in context: A045328 A045329 A271666 * A069104 A003631 A175443
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved