|
|
A106253
|
|
First difference of A106252.
|
|
1
|
|
|
2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It appears that this sequence is periodic with period 6.
Terms of the simple continued fraction of 21/[2*sqrt(78)-9]. Decimal expansion of 2441/10989. [From Paolo P. Lava, Aug 05 2009]
|
|
LINKS
|
Table of n, a(n) for n=1..105.
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 1, 1).
|
|
FORMULA
|
a(n)=1/90*{-4*(n mod 6)+41*[(n+1) mod 6]-19*[(n+2) mod 6]+26*[(n+3) mod 6]+11*[(n+4) mod 6]+11*[(n+5) mod 6]} - Paolo P. Lava, Nov 21 2006
a(n)=1/90*{-4*(n mod 6)+41*[(n+1) mod 6]-19*[(n+2) mod 6]+26*[(n+3) mod 6]+11*[(n+4) mod 6]+11*[(n+5) mod 6]} with n>=0 - Paolo P. Lava, Nov 27 2006
|
|
MATHEMATICA
|
LinearRecurrence[{-1, 0, 1, 1}, {2, 2, 2, 1}, 105] (* Ray Chandler, Aug 26 2015 *)
|
|
CROSSREFS
|
Cf. A106252.
Cf. A083039. [From R. J. Mathar, Aug 24 2008]
Sequence in context: A265671 A214707 A083039 * A078720 A270488 A083898
Adjacent sequences: A106250 A106251 A106252 * A106254 A106255 A106256
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John W. Layman, Apr 27 2005
|
|
STATUS
|
approved
|
|
|
|