login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fourth root of theta series of lattice {D_12}^{+} (cf. A004533).
2

%I #15 Jul 08 2017 02:58:40

%S 1,0,66,512,-4548,-95232,235896,19184640,71390982,-3574929408,

%T -38686277880,549355393536,12560156358776,-44726582455296,

%U -3304393480144896,-11697847949288448,730893806097007116,7947401735635359744,-128019618062747473590,-2899743155552604891648

%N Fourth root of theta series of lattice {D_12}^{+} (cf. A004533).

%H Vincenzo Librandi, <a href="/A106212/b106212.txt">Table of n, a(n) for n = 0..200</a>

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%t terms = 20; s = ((EllipticTheta[2, 0, q]^12 + EllipticTheta[3, 0, q]^12 + EllipticTheta[4, 0, q]^12)/2)^(1/4) + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 08 2017 *)

%K sign

%O 0,3

%A _N. J. A. Sloane_ and _Nadia Heninger_, Jul 13 2005