The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106166 Number of indecomposable binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 4. 2
0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 6, 7, 24, 44, 145, 444, 2441, 19848 (list; graph; refs; listen; history; text; internal format)



R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.

R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.

J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.

V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.


Table of n, a(n) for n=1..18.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).


Sequence in context: A268500 A283824 A106168 * A101343 A284748 A134457

Adjacent sequences:  A106163 A106164 A106165 * A106167 A106168 A106169




N. J. A. Sloane, May 09 2005


a(34) computed by N. J. A. Sloane, based on data in Bilous's paper, Sep 06 2005



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:34 EDT 2021. Contains 343988 sequences. (Running on oeis4.)