login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central terms in even-indexed rows of triangle A105556 and thus equals the n-th row sum of the n-th matrix power of the Narayana triangle A001263.
1

%I #8 Jul 19 2016 11:04:46

%S 1,2,12,148,3105,99156,4481449,272312216,21414443481,2116193061340,

%T 256712977920256,37506637787774112,6496315164318118165,

%U 1316230822119433518312,308426950979497974254310

%N Central terms in even-indexed rows of triangle A105556 and thus equals the n-th row sum of the n-th matrix power of the Narayana triangle A001263.

%C Each term a(n) is divisible by (n+1) for all n>=0.

%F Contribution from _Paul D. Hanna_, Jan 31 2009: (Start)

%F a(n) = (n+1)*A155926(n) for n>=0.

%F G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n] with B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n] and A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n]. (End)

%e Terms a(n) divided by (n+1) begin:

%e 1,1,4,37,621,16526,640207,34039027,2379382609,211619306134,...

%e Contribution from _Paul D. Hanna_, Jan 31 2009: (Start)

%e G.f.: A(x) = 1 + 2*x + 12*x^2/3 + 148*x^3/18 + 3105*x^4/180 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...

%e G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and:

%e F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^n/[n!*(n+1)!/2^n] +...

%e B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 +...+ x^n/[n!*(n+1)!/2^n] +... (End)

%o (PARI) a(n)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(j=0,n,(N^n)[n+1,j+1])

%o for(n=0,20,print1(a(n),", "))

%o (PARI) a(n)=local(F=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(deriv(serreverse(x/F)),n)*n!*(n+1)!/2^n

%o for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 31 2009

%Y Cf. A001263, A105556, A155926.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 14 2005