OFFSET
0,2
COMMENTS
Each term a(n) is divisible by (n+1) for all n>=0.
FORMULA
Contribution from Paul D. Hanna, Jan 31 2009: (Start)
a(n) = (n+1)*A155926(n) for n>=0.
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n] with B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n] and A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n]. (End)
EXAMPLE
Terms a(n) divided by (n+1) begin:
1,1,4,37,621,16526,640207,34039027,2379382609,211619306134,...
Contribution from Paul D. Hanna, Jan 31 2009: (Start)
G.f.: A(x) = 1 + 2*x + 12*x^2/3 + 148*x^3/18 + 3105*x^4/180 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and:
F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^n/[n!*(n+1)!/2^n] +...
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
PROG
(PARI) a(n)=local(N=matrix(n+1, n+1, m, j, if(m>=j, binomial(m-1, j-1)*binomial(m, j-1)/j))); sum(j=0, n, (N^n)[n+1, j+1])
for(n=0, 20, print1(a(n), ", "))
(PARI) a(n)=local(F=sum(k=0, n, x^k/(k!*(k+1)!/2^k))+x*O(x^n)); polcoeff(deriv(serreverse(x/F)), n)*n!*(n+1)!/2^n
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 31 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2005
STATUS
approved