login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105558
Central terms in even-indexed rows of triangle A105556 and thus equals the n-th row sum of the n-th matrix power of the Narayana triangle A001263.
1
1, 2, 12, 148, 3105, 99156, 4481449, 272312216, 21414443481, 2116193061340, 256712977920256, 37506637787774112, 6496315164318118165, 1316230822119433518312, 308426950979497974254310
OFFSET
0,2
COMMENTS
Each term a(n) is divisible by (n+1) for all n>=0.
FORMULA
Contribution from Paul D. Hanna, Jan 31 2009: (Start)
a(n) = (n+1)*A155926(n) for n>=0.
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n] with B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n] and A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n]. (End)
EXAMPLE
Terms a(n) divided by (n+1) begin:
1,1,4,37,621,16526,640207,34039027,2379382609,211619306134,...
Contribution from Paul D. Hanna, Jan 31 2009: (Start)
G.f.: A(x) = 1 + 2*x + 12*x^2/3 + 148*x^3/18 + 3105*x^4/180 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and:
F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^n/[n!*(n+1)!/2^n] +...
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
PROG
(PARI) a(n)=local(N=matrix(n+1, n+1, m, j, if(m>=j, binomial(m-1, j-1)*binomial(m, j-1)/j))); sum(j=0, n, (N^n)[n+1, j+1])
for(n=0, 20, print1(a(n), ", "))
(PARI) a(n)=local(F=sum(k=0, n, x^k/(k!*(k+1)!/2^k))+x*O(x^n)); polcoeff(deriv(serreverse(x/F)), n)*n!*(n+1)!/2^n
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 31 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2005
STATUS
approved