Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Nov 20 2024 23:47:32
%S 0,0,4,1,8,4,0,7,6,0,0,2,0,7,4,7,2,3,8,6,4,5,3,8,2,1,4,9,5,9,2,8,5,4,
%T 5,2,7,4,1,0,4,8,0,6,5,3,0,7,6,3,1,9,5,0,8,2,7,0,1,9,6,1,2,8,8,7,1,8,
%U 1,7,7,8,3,4,1,4,2,2,8,9,3,2,7,3,7,8,2,6,0,5,8,1,3,6,2,2,9,0,9,4,5,4,9,7,5
%N Decimal expansion of arctan 1/239.
%C Comment from _Frank Ellermann_, Mar 01 2020: (Start)
%C 8*A195790 - arctan( 1/239 ) - 4*arctan( 1/515 ) = Pi/4 (Meissel, Klingenstierna).
%C 12*arctan( 1/18 ) + 8*arctan( 1/57 ) - 5*arctan( 1/239 ) = Pi/4 (Gauss). (End)
%H D. H. Lehmer, <a href="https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_7.pdf">On Arccotangent Relations for π</a>, The American Mathematical Monthly, Vol. 45, No. 10 (Dec., 1938), pp. 657-664.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Machin-LikeFormulas.html">Machin-Like Formulas</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F 4*A105532 - arctan(1/239) = Pi/4 (Machin's formula).
%F arctan(1/239) = Sum_{n >= 1} i/(n*P(n, 239*i)*P(n-1, 239*i)) = 1/239 - 1/40955996 + 1/8773020079176 - 1/1948832181801673304 + 4/1753293766205137615850855 - ..., where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. - _Peter Bala_, Mar 21 2024
%e 0.0041840760020747238645382149...
%t len = 103; n = RealDigits[N[ArcTan[1/239], len]]; PadLeft[First@ n, len + Abs@ Last@ n] (* _Michael De Vlieger_, Sep 14 2015 *)
%t Join[{0,0},RealDigits[ArcTan[1/239],10,120][[1]]] (* _Harvey P. Dale_, Apr 29 2016 *)
%o (PARI) atan(1/239) \\ _Michel Marcus_, Sep 24 2014
%Y Cf. A003881 (Pi/4), A021243 (1/239), A105532 (arctan 1/5), A195790 (arccot 10).
%K cons,nonn
%O 0,3
%A Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005