OFFSET
0,3
COMMENTS
Comment from Frank Ellermann, Mar 01 2020: (Start)
8*A195790 - arctan( 1/239 ) - 4*arctan( 1/515 ) = Pi/4 (Meissel, Klingenstierna).
12*arctan( 1/18 ) + 8*arctan( 1/57 ) - 5*arctan( 1/239 ) = Pi/4 (Gauss). (End)
LINKS
D. H. Lehmer, On Arccotangent Relations for π, The American Mathematical Monthly, Vol. 45, No. 10 (Dec., 1938), pp. 657-664.
Eric Weisstein's World of Mathematics, Machin-Like Formulas
FORMULA
4*A105532 - arctan(1/239) = Pi/4 (Machin's formula).
arctan(1/239) = Sum_{n >= 1} i/(n*P(n, 239*i)*P(n-1, 239*i)) = 1/239 - 1/40955996 + 1/8773020079176 - 1/1948832181801673304 + 4/1753293766205137615850855 - ..., where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 21 2024
EXAMPLE
0.0041840760020747238645382149...
MATHEMATICA
len = 103; n = RealDigits[N[ArcTan[1/239], len]]; PadLeft[First@ n, len + Abs@ Last@ n] (* Michael De Vlieger, Sep 14 2015 *)
Join[{0, 0}, RealDigits[ArcTan[1/239], 10, 120][[1]]] (* Harvey P. Dale, Apr 29 2016 *)
PROG
(PARI) atan(1/239) \\ Michel Marcus, Sep 24 2014
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005
STATUS
approved