login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105534
Decimal expansion of arctan 1/239.
1
0, 0, 4, 1, 8, 4, 0, 7, 6, 0, 0, 2, 0, 7, 4, 7, 2, 3, 8, 6, 4, 5, 3, 8, 2, 1, 4, 9, 5, 9, 2, 8, 5, 4, 5, 2, 7, 4, 1, 0, 4, 8, 0, 6, 5, 3, 0, 7, 6, 3, 1, 9, 5, 0, 8, 2, 7, 0, 1, 9, 6, 1, 2, 8, 8, 7, 1, 8, 1, 7, 7, 8, 3, 4, 1, 4, 2, 2, 8, 9, 3, 2, 7, 3, 7, 8, 2, 6, 0, 5, 8, 1, 3, 6, 2, 2, 9, 0, 9, 4, 5, 4, 9, 7, 5
OFFSET
0,3
COMMENTS
Comment from Frank Ellermann, Mar 01 2020: (Start)
8*A195790 - arctan( 1/239 ) - 4*arctan( 1/515 ) = Pi/4 (Meissel, Klingenstierna).
12*arctan( 1/18 ) + 8*arctan( 1/57 ) - 5*arctan( 1/239 ) = Pi/4 (Gauss). (End)
LINKS
D. H. Lehmer, On Arccotangent Relations for π, The American Mathematical Monthly, Vol. 45, No. 10 (Dec., 1938), pp. 657-664.
Eric Weisstein's World of Mathematics, Machin-Like Formulas
FORMULA
4*A105532 - arctan(1/239) = Pi/4 (Machin's formula).
arctan(1/239) = Sum_{n >= 1} i/(n*P(n, 239*i)*P(n-1, 239*i)) = 1/239 - 1/40955996 + 1/8773020079176 - 1/1948832181801673304 + 4/1753293766205137615850855 - ..., where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 21 2024
EXAMPLE
0.0041840760020747238645382149...
MATHEMATICA
len = 103; n = RealDigits[N[ArcTan[1/239], len]]; PadLeft[First@ n, len + Abs@ Last@ n] (* Michael De Vlieger, Sep 14 2015 *)
Join[{0, 0}, RealDigits[ArcTan[1/239], 10, 120][[1]]] (* Harvey P. Dale, Apr 29 2016 *)
PROG
(PARI) atan(1/239) \\ Michel Marcus, Sep 24 2014
CROSSREFS
Cf. A003881 (Pi/4), A021243 (1/239), A105532 (arctan 1/5), A195790 (arccot 10).
Sequence in context: A376815 A263498 A198314 * A021243 A340531 A096051
KEYWORD
cons,nonn
AUTHOR
Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005
STATUS
approved