login
A105529
Given a list of ternary numbers, interpret each as a ternary modular Gray code number, then convert to decimal.
4
0, 1, 2, 4, 5, 3, 8, 6, 7, 13, 14, 12, 17, 15, 16, 9, 10, 11, 26, 24, 25, 18, 19, 20, 22, 23, 21, 40, 41, 39, 44, 42, 43, 36, 37, 38, 53, 51, 52, 45, 46, 47, 49, 50, 48, 27, 28, 29, 31, 32, 30, 35, 33, 34, 80, 78, 79, 72, 73, 74, 76, 77, 75
OFFSET
0,3
EXAMPLE
a(9) = 13 since Ternary 100 (9 decimal) interpreted as Ternary Gray code = 13.
MATHEMATICA
a[n_] := Module[{v = IntegerDigits[n, 3]}, Do[v[[i]] = Mod[v[[i]]+v[[i-1]], 3], {i, 2, Length[v]}]; FromDigits[v, 3]];
Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Jun 26 2023, after Kevin Ryde *)
PROG
(PARI) a(n) = my(v=digits(n, 3)); for(i=2, #v, v[i]=(v[i]+v[i-1])%3); fromdigits(v, 3); \\ Kevin Ryde, May 23 2020
CROSSREFS
Cf. A105530 (inverse), A128173 (ternary reflected), A006068 (binary), A226134 (decimal modular), A007089.
Sequence in context: A327432 A159958 A071770 * A329454 A120237 A026182
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 11 2005
EXTENSIONS
More terms from Sean A. Irvine, Feb 09 2012
Comments by Gary W. Adamson moved to A105530 where they better apply. - Kevin Ryde, May 30 2020
STATUS
approved