login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105236
a(n+5) = (a(n+4)*a(n+1) + 2*a(n+3)*a(n+2))/a(n).
1
1, 1, 1, 1, 1, 3, 5, 11, 41, 233, 689, 5337, 49081, 458299, 3603685, 93208147, 1476087601, 27470407569, 816413467841, 43620306030449, 1172020019840081, 70063780891581107, 5804382690927311525, 511286588817798535899
OFFSET
0,6
COMMENTS
This is a bilinear recurrence of Somos 5 type, hence the terms a(n) are associated with a sequence of points P_n = P_0 + n*P on an elliptic curve E. In this case the curve E has integral j-invariant j=10976.
LINKS
A. N. W. Hone, Sigma function solution of the initial value problem for Somos 5 sequences, arXiv:math/0501554 [math.NT], 2005-2006.
A. N. W. Hone, Bilinear recurrences and addition formulas for hyperelliptic sigma functions, arXiv:math/0501162 [math.NT], 2005.
A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. Lond. Math. Soc. 37 (2005) 161-171.
A. J. van der Poorten, Elliptic curves and continued fractions, J. Int. Sequences, Volume 8, no. 2 (2005), article 05.2.5.
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==1, a[n]==(2 a[-3+n] a[-2+n]+a[-4+n] a[-1+n])/a[-5+n]}, a, {n, 30}] (* Harvey P. Dale, Sep 15 2013 *)
PROG
(Magma) [n le 5 select 1 else (Self(n-1)*Self(n-4) +2*Self(n-2)*Self(n-3))/Self(n-5): n in [1..41]]; // G. C. Greubel, Nov 26 2022
(SageMath)
@CachedFunction
def a(n): # a = A105236
if (n<5): return 1
else: return (a(n-1)*a(n-4) +2*a(n-2)*a(n-3))/a(n-5)
[a(n) for n in range(41)] # G. C. Greubel, Nov 26 2022
CROSSREFS
Sequence in context: A162250 A055511 A236457 * A332968 A144467 A049883
KEYWORD
nonn
AUTHOR
Andrew Hone, Apr 14 2005
STATUS
approved