login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105229
a(n) = Sum_{k=0..n} (1-(-1)^( floor( (-n-k)/2^k ) )) * 2^(k-1).
3
0, 3, 4, 9, 26, 59, 112, 245, 502, 1015, 2036, 4081, 8178, 16355, 32744, 65517, 131054, 262127, 524268, 1048553, 2097130, 4194283, 8388576, 16777189, 33554406, 67108839, 134217700, 268435425, 536870850, 1073741779, 2147483608, 4294967261, 8589934558
OFFSET
0,2
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
FORMULA
a(n) + A105228(n) = 2^(n+1) for n > 0.
MAPLE
A105229 :=proc(n) add( (1-(-1)^( floor( (-n-k)/2^k ) )) * 2^(k-1), k=0..n); end;
CROSSREFS
Sequence in context: A354545 A247087 A270756 * A237583 A362353 A080849
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 15 2005
STATUS
approved