login
First terms in the rearrangements of integer numbers (see comments).
1

%I #2 Mar 30 2012 17:26:11

%S 1,2,1,3,2,1,4,5,3,2,1,6,7,4,8,9,10,11,5,3,2,1,12,13,6,14,15,16,17,7,

%T 4,18,19,8,20,21,22,23,9,24,25,26,27,28,29,10,30,31,11,5,3,2,1,32,33,

%U 34,35,36,37,12,38,39,40,41,13,6,42,43,14,44,45,46,47,15,48,49,50,51,52,53

%N First terms in the rearrangements of integer numbers (see comments).

%C Take the sequence of natural numbers: s0=1,2,3,4,5,6,7,8,9,10,11, Repeating the procedure: "Move the first term s(1) after s(1)-th prime": we get successively: s1=2,1,3,4,5,6,7,8,9,10,11, s2=1,3,2,4,5,6,7,8,9,10,11, s3=3,2,1,4,5,6,7,8,9,10,11, s4=2,1,4,5,3,6,7,8,9,10,11, s5=1,4,5,3,2,6,7,8,9,10,11, ............................................................ s100=8,68,69,70,71,20,72,73,21,74,75,76,77,78,79,22,80,81,82, 83,23,9,84,85,86,87,88,89,24,90,91,92,93,94,95,96,97,25,98,99, 100,101,26,102,103,27,104,105,106,107,28,108,109,29,10,110, The sequence A104741 gives the first terms in the rearrangements s0,s1,s2,... Cf. A104705, A104706, A104717

%Y Cf. A104705, A104706, A104717.

%K nonn

%O 1,2

%A _Zak Seidov_, Mar 21 2005