login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104459
Possible differences between adjacent palindromes.
3
1, 2, 10, 11, 100, 110, 1000, 1100, 10000, 11000, 100000, 110000, 1000000, 1100000, 10000000, 11000000, 100000000, 110000000, 1000000000, 1100000000, 10000000000, 11000000000, 100000000000, 110000000000, 1000000000000, 1100000000000, 10000000000000
OFFSET
1,2
COMMENTS
Possible first differences of A002113.
FORMULA
a(n) = 2 if n = 2; 11*10^((n-4)/2) if n even >= 4; 10^((n-1)/2) if n odd.
a(n) = 10*a(n-2), starting 1,2,10,11.
G.f.: x*(1 + 2*x - 9*x^3)/(1 - 10*x^2). - Stefano Spezia, Dec 08 2021
EXAMPLE
536635 and 537735 are adjacent palindromes, so 537735-536635 = 1100 is in the sequence.
MATHEMATICA
PalindromeQ[n_]:=Reverse[IntegerDigits[n]]==IntegerDigits[n]; q=0; lst={}; Do[If[PalindromeQ[n], AppendTo[lst, n-q]; q=n], {n, 10!}]; Union@lst (* Vladimir Joseph Stephan Orlovsky, Oct 26 2009 *)
Flatten[Join[{1, 2}, Table[{10, 11}10^n, {n, 0, 15}]]] (* Harvey P. Dale, Dec 22 2012 *)
CROSSREFS
Cf. A002113.
Sequence in context: A023151 A342535 A265747 * A008560 A188283 A174703
KEYWORD
base,easy,nonn
AUTHOR
David W. Wilson, Mar 08 2005
STATUS
approved