

A104176


a(n) = bitwise OR of all terms of nth row of Pascal's triangle.


1



1, 1, 3, 3, 7, 15, 31, 55, 127, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 126975, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Pascal's Triangle


FORMULA

Most but not all terms are of the form 2^n  1 for some integer n. In the first 1600 terms we have: repeated numbers: 1, 3, 127 and 274877906943. Numbers not of form 2^n 1: 55, 126975.


EXAMPLE

Row 0 = 1 = 1
Row 1 = 1 OR 1 = 1
Row 2 = 1 OR 2 OR 1 = 3
Row 3 = 1 OR 3 OR 3 OR 1 = 3


MATHEMATICA

BitOr@@@Table[Binomial[n, k], {n, 0, 40}, {k, 0, n}] (* Harvey P. Dale, Jun 15 2021 *)


PROG

(PARI) a(n) = {or = binomial (n, 0); for (i=1, n, or = bitor(or, binomial(n, i)); ); return (or); } \\ Michel Marcus, Jun 08 2013


CROSSREFS

Sequence in context: A056420 A030069 A004043 * A032294 A146034 A032029
Adjacent sequences: A104173 A104174 A104175 * A104177 A104178 A104179


KEYWORD

nonn,base,changed


AUTHOR

Andrew G. West (WestA(AT)wlu.edu), Mar 28 2005


EXTENSIONS

Name changed by Franklin T. AdamsWatters, Mar 29 2014


STATUS

approved



