OFFSET
1,2
COMMENTS
Apparently all terms > 1 are even. - Zak Seidov, Mar 23 2015
For n <= 95, no a(n) is divisible by 3; a(2), a(25) and a(57) == 2 (mod 3), the rest == 1 (mod 3). - Robert Israel, Mar 23 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..112 (terms < 10^13; first 50 terms from Donovan Johnson)
FORMULA
a(n) = A065900(n) - 2. - R. J. Mathar, Aug 19 2010
a(n) = A076530(n) - 1. - M. F. Hasler, Aug 19 2010
EXAMPLE
sigma(22) = 1+2+11+22 = 36.
sigma(23) = 1+23 = 24.
sigma(24) = 1+2+3+4+6+8+12+24 = 60.
sigma(24) = sigma(23) + sigma(22).
MATHEMATICA
Select[Range@ 100000, DivisorSigma[1, # + 2] == DivisorSigma[1, # + 1] + DivisorSigma[1, #] &] (* Michael De Vlieger, Mar 23 2015 *)
Position[Partition[DivisorSigma[1, Range[3*10^7]], 3, 1], _?(#[[1]]+#[[2]]==#[[3]]&), 1, Heads->False]//Flatten (* The program generates the first 13 terms *) (* Harvey P. Dale, May 08 2018 *)
PROG
(PARI) s1=1; s2=3; for(n=1, 10^8, s3=sigma(n+2); if(s3==s1+s2, print1(n ", ")); s1=s2; s2=s3) /* Donovan Johnson, Apr 08 2013 */
(Magma) [n: n in [1..2*10^6] | SumOfDivisors(n+2) eq (SumOfDivisors(n+1)+SumOfDivisors(n))]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Neven Juric (neven.juric(AT)apis-it.hr), Aug 16 2010
EXTENSIONS
More terms from Zak Seidov and R. J. Mathar, Aug 19 2010
STATUS
approved