login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104149
Numbers k such that sigma(k+2) = sigma(k+1) + sigma(k).
5
1, 2, 22, 1966, 3262, 5014, 60454, 1016506, 4420162, 12055510, 14365606, 25726726, 27896422, 66562306, 72764734, 98734966, 175186654, 224868310, 253694926, 288657202, 386668342, 421575406, 504737746, 630645454, 1493547998, 1653797794, 2120325010, 2221315150
OFFSET
1,2
COMMENTS
Apparently all terms > 1 are even. - Zak Seidov, Mar 23 2015
For n <= 95, no a(n) is divisible by 3; a(2), a(25) and a(57) == 2 (mod 3), the rest == 1 (mod 3). - Robert Israel, Mar 23 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..112 (terms < 10^13; first 50 terms from Donovan Johnson)
FORMULA
a(n) = A065900(n) - 2. - R. J. Mathar, Aug 19 2010
a(n) = A076530(n) - 1. - M. F. Hasler, Aug 19 2010
EXAMPLE
sigma(22) = 1+2+11+22 = 36.
sigma(23) = 1+23 = 24.
sigma(24) = 1+2+3+4+6+8+12+24 = 60.
sigma(24) = sigma(23) + sigma(22).
MATHEMATICA
Select[Range@ 100000, DivisorSigma[1, # + 2] == DivisorSigma[1, # + 1] + DivisorSigma[1, #] &] (* Michael De Vlieger, Mar 23 2015 *)
Position[Partition[DivisorSigma[1, Range[3*10^7]], 3, 1], _?(#[[1]]+#[[2]]==#[[3]]&), 1, Heads->False]//Flatten (* The program generates the first 13 terms *) (* Harvey P. Dale, May 08 2018 *)
PROG
(PARI) s1=1; s2=3; for(n=1, 10^8, s3=sigma(n+2); if(s3==s1+s2, print1(n ", ")); s1=s2; s2=s3) /* Donovan Johnson, Apr 08 2013 */
(Magma) [n: n in [1..2*10^6] | SumOfDivisors(n+2) eq (SumOfDivisors(n+1)+SumOfDivisors(n))]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
Sequence in context: A337577 A054948 A330124 * A113761 A319620 A054349
KEYWORD
nonn
AUTHOR
Neven Juric (neven.juric(AT)apis-it.hr), Aug 16 2010
EXTENSIONS
More terms from Zak Seidov and R. J. Mathar, Aug 19 2010
STATUS
approved