The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103875 Numbers k such that 2*P(k) + 5, 2*P(k+1) + 7, 2*P(k+2) + 9, 2*P(k+3) + 11 are also consecutive primes where P(i) = i-th prime. 2
 43465, 79433, 82148, 300879, 584423, 609169, 631181, 704593, 1293377, 1393266, 1939691, 2203731, 2396444, 2585471, 3224519, 3533876, 3687348, 3951399, 4094469, 4239250, 4442048, 4648592, 4744723, 5076823, 5190219, 5397694, 6779299, 7850072, 7942431, 8679283, 8851519 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..31. MATHEMATICA cpQ[n_]:=Module[{p=Prime[n], a, b, c, d}, a=2p+5; b=2Prime[n+1]+7; c= 2*Prime[n+2]+9; d=2Prime[n+3]+11; AllTrue[{a, b, c, d}, PrimeQ]&&b== NextPrime[a]&&c==NextPrime[b]&&d==NextPrime[c]]; Select[Range[10^6], cpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 14 2017 *) PROG (PARI) lista(nn) = {my(k=1, v=[2, 3, 5, 7]); forprime(p=11, nn, k++; v=concat(v[2..4], p); if(ispseudoprime(2*v[1]+5) && nextprime(2*v[1]+6)==2*v[2]+7 && nextprime(2*v[2]+8)==2*v[3]+9 && nextprime(2*v[3]+10)==2*v[4]+11, print1(k, ", "))); } \\ Jinyuan Wang, Mar 05 2020 CROSSREFS Cf. A103873, A103874. Sequence in context: A258677 A184382 A126771 * A224623 A210331 A233690 Adjacent sequences: A103872 A103873 A103874 * A103876 A103877 A103878 KEYWORD nonn AUTHOR Pierre CAMI, Feb 19 2005 EXTENSIONS Corrected and extended by Harvey P. Dale, Jan 14 2017 More terms from Jinyuan Wang, Mar 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 13:13 EDT 2024. Contains 373705 sequences. (Running on oeis4.)